

CAP19

Knowledge Relationships Expertise

S1953S

A Glimpse into the Future Practice: Transitioning to an Effective Pathology Practitioner in the Age of Machine Learning

Anand S. Dighe, MD, PhD Barbara S. Ducatman, MD, FCAP Michael D. Feldman, MD, PhD Andrew R. Janowczyk, PhD

Agenda

- Brief comments
 - Introduce an interesting reference (Eric Topol, *Deep Medicine*)
- Introduce the speakers
 - Anand S. Dighe, MD, PhD (Massachusetts General Hospital)
 - Michael D. Feldman, MD, PhD (University of Pennsylvania)
 - Andrew R. Janowczyk, PhD (Case Western Reserve University)

Will artificial intelligence replace doctors?

Several new studies have shown that computers can outperform doctors in cancer screenings and disease diagnoses. What does that mean for newly trained radiologists and pathologists?

The outlandish expectations for Al in healthcare, a partial list (Table 1.1 in Deep Medicine by Eric Topol)

- Outperform doctors at all tasks
- Diagnose the undiagnoseable
- Treat the untreatable
- See the unseeable on scans, slides
- Classify the unclassifiable
- Eliminate workflow inefficiencies
- Eliminate hospital admissions and readmissions
- Eliminate the surfeit of unnecessary jobs
- 100% medication adherence
- Zero patient harm
- Cure cancer

Table 1.2 from Deep Medicine: changes inMedicine from 1975 to now

Table 1.2		
Metric	1975	Now
# healthcare (HC) jobs	4 Million	>16 Million
HC spending per person per year	\$550	>\$11,000
Time allocated for office	60 min. new	12 min. new
visits	30 min. return	7 min return
visits % GDP for HC	30 min. return	7 min return 18

Future of AI (from Deep Medicine)

- Deep phenotyping (Ability to deeply define each individual using all relevant data (medical, social, behavioral, family history, anatomy, physiology and environment))
- Deep learning (wide range of conditions)
- Deep empathy and connection greatest opportunity

Where Al lives the hype

- Specific pattern based recognition in specific fields
 - Needs careful training and validation (more coming)

CAP19

Knowledge Relationships Expertise

S1953S

A Glimpse into the Future Practice: Transitioning to an Effective Pathology Practitioner in the Age of Machine Learning

Anand S. Dighe, MD, PhD Barbara S. Ducatman, MD, FCAP Michael D. Feldman, MD, PhD Andrew R. Janowczyk, PhD

Clinical Laboratory Informatics: New Tools to Improve Quality and Enhance Value

Director, MGH Core Laboratory Director of Clinical Informatics Clinical Lead, Partners Enterprise Pathology and eCare Associate Professor, Harvard Medical School Massachusetts General Hospital Boston, MA

CAP19 Knowledge Relationships Expertise

Course S1953S

© 2019 College of American Pathologists. Materials used with permission of faculty.

MASSACHUSETTS

PATHOLOGY

GENERAL HOSPITAL

MGH

Outline

Role of informatics in the redesign of two key pathology/healthcare processes:

1. Test ordering

2. Result generation/interpretation

 $\ensuremath{\textcircled{\sc c}}$ 2019 College of American Pathologists. Materials used with permission of faculty.

"The Dark Ages" (1990s)

IMMUNOLOGY SECTION
R SPEP + Quant. IgG, IgA, IgM (IEPAP) R 🗌 Free к/λ Light Chains w/ Ratio (EKLRB)
R IgG R IgA R IgM R IgE R Viscosity R H. pylori IgG Ab R Haptoglob.
R Antinuclear Ab R AFF (BHE) R a COP R +Hyper. Pneu. Panel (HPS) R a1-AT
R StaDNA R StaBo / La R StaSm / RNP R a Jo1 (JO1) R a Sci70 R Ceruloplasmin
R Mitochondrial Ab (AMA) R Smooth Muscle Ab (SMA) R Gastric Parietal Cell Ab (AGPC)
u XBJ protein (UBJP) u □ Urine Free x/λ w/Ratio (UKLRB) □ Crystals, joint fluid (JFCP)
Send on Ice: Send warm, 37°C (Separate Regulation & Bag Required)
R C1 inhibitor protein Factor B (PEB) 2R Cryocrit+identification (CRY)
DIABETES SECTION
L Hgb A1C (A1CC) by affinity, circle reason: sickle cell thalassemia HgbF other:
GI SECTION
E Ab to Hep A (IgG / IgM) (ANTHAV)
The Ab to Hep B Core Ag, Total (ANTHBC)
CINTID DOILES TOT CETTOR SPILE P Hep B Viral DNA (HBVOT)
Transalotaminase R Ap to Hep Delta Virus (ANTHDV)
ONE OTHER I Can't remember Hep C Viral RNA Quant
Mame P Hap C Viral RNA Qual (HCVQL)
Thep of viral Genotype (HovGN)
tens for this lab in the Miera Delugination delays we see

Permits Pathology to have control over Provider Order Entry screens

Am J Clin Pathol. 2011;135:108 Am J Clin Pathol. 2010;133:860

- After extensive evaluation from Partners selected Epic as the vendor for the enterprise-wide implementation of Partners eCare
- Total cost of the 7 year implementation (2013-2019) across Partners was \$1.9 billion dollars

The "Good Old Days" (2000-2015: homegrown custom lab software)

"If you're yearning for the good old days, just turn off the air conditioning."

- Griff Niblack

The "Good Old Days:"

- Limited ability for Pathology to intervene in care pathways
- Limited ability for Pathology to interact with provider orders
- Limited ability to assess outcomes
- Poor infrastructure in place for decision support
- Challenges in obtaining data for projects
- Computational techniques not widely used in Pathology

Enterprise Lab Information System Governance

Pre-Epic

 Local LIS teams at each hospital (large teams at MGH and BWH)

Post-Epic

- Single enterprise LIS team for all enterprise lab functions
- Enterprise LIS team tightly integrated with the Epic orders team
- Shared tools, org chart, and infrastructure
- EHR enterprise lab leadership structure

All IT and LIS teams co-localized in new facility

Pathology Datamart (Pre-EHR)

Pathology Datamart (Post-EHR)

Epic Reporting Tools

Laboratory Metrics: Online Dashboard

	Homegrown system	Enterprise system (Epic)
Menu size	Limited (95%)	Most tests available (99%)
In lab processing	Manual steps, slow	Rapid, efficient
Lab test search	Provides decision support, CDS visible when searching	Search capabilities primitive, does not store search results or provide visible CDS when searching
Ordering favorites	Not permitted	Allowed
Order sets	Reviewed by lab	Uncommonly reviewed by lab
Collection process	Simple (but manual)	Complex (but electronic)
Decision support availability	Custom, fast, not requiring programming	Extensive possibilities but requires many levels of approvals, implementation complex
Utilization control	Able to easily manipulate menu, CDS to influence testing	More challenging

New Responsibilities for Pathologists in the EHR Era

EHR Lab Order Entry

Facility List Search	- Zzzmghcardtest,Twenty	
CELIAC Search	Browse (F4) Preference List (F5) Facility	List (F6) Database Lookup (F7)
	Medications Procedures	✓ Order Panels Split
Name	Dose Freq Type Cod Pref Lis Formular Copay Cove	rai Resulting Agenci Type
Anti gliadin IgA antibody (MGH Only) (CELIAC SPRUE SEROLOGY ANTIBO	Lab LAB/ MGH O	MGH, External
Anti gliadin IgG antibody (MGH Only) (CELIAC SPRUE SEROLOGY ANTIBO	Lab LAB MGH O	MGH, External
Case Request Cath Lab (CELIAC ARTERIOGRAM WITH POSSIBLE INTER	Case CATI MGH O	
Celiac antibodies	Lab LAB MGH O	BWH, BWF, MGH
Celiac HLA-DQ typing	Lab LAB MGH O	BWH, BWF, MGH
Endomysial IgA antibody (BWH,BWF,DFCI,MGH,NWH Only) (CELIAC ANTI	Lab LAB MGH O	BWH, BWF, DFCI
Gliadin deamidated antibody, IgG/IgA (BWH,BWF,MGH,NWH,MEE Only) (C	Lab LAB; MGH O	BWH, BWF, MGH
Saccharomyces cerevisiae antibody, IgA (BWF,MGH Only) (CELIAC DISEA	Lab LAB MGH O	BWF, MGH
Tissue transglutaminase IgA (CELIAC DISEASE)	Lab LAB MGH O	BWH, BWF, DFCI
US Abdomen Artery/ Veins Duplex Complete (CELIAC)	Imagi US.\ MGH O	PHSRAD
US Abdomen Artery/ Veins Duplex Complete (CELIAC)	Imagi US.\ MGH IM	PHSRAD
US Abdomen Artery/ Veins Duplex Limited (Mesenteric) (CELIAC)	Imagi US.\ MGH IM	PHSRAD
US Abdomen Artery/ Veins Duplex Limited (TIPS) (CELIAC)	Imagi US.\ MGH IM	PHSRAD Enio

• EHR order generation is complex: lab tests can be ordered via a facility list, departmental list, personal preference list, order set, therapy plan, or decision support rule

 Team oriented medicine means many providers (resident, attending, medical assistant) may be involved in a single order
 → Understanding EHR test ordering pathways is essential to control utilization

Example: Rapid Responses to Volume Spikes

• Large spike in RBC folate orders noted during routine monitoring

• With our Epic dashboard we were quickly able to localize the orders to a single enterprise anemia order set

• We first swapped out RBC folate for serum folate and later entirely removed RBC folate from the menu

I'm reaching out in regards to your ticket about switching the folate lab available in the anemia panel. I've chatted with our clinical content lead, and he wanted me to send along this screenshot for review: Folate levels in the liquid portion of blood (serum) can vary based on a person's recent diet. Because red blood cells store 95% of circulating folate, a test to measure the folate level within RBCs may be used in addition to or instead of the serum test. Some health practitioners feel that the RBC folate test is a better indicator of long-term folate status and is more clinically relevant than serum folate, but there is not widespread agreement on this.

Agile Approaches to Clinical Decision Support

- Laboratory is an integral part of the enterprise decision support team
- CDS team meets weekly to reset priorities for two week software sprints
- Has reduced the cycle time for decision support alerts to weeks instead of quarters
- Automation of monitoring with interactive, real time CDS dashboards

	Best	Practice Advisory - Test, Landestoy
portant (1)		3
PHS Lab Advisory Alert		
		provide feedback: 🕲 🕮 🙁
At MGH, all SPEP Par necessary on the basis	nels are reviewed b s of the serum prote	by a physician Lab Director and immunofixation is added when deemed tein electrophoresis, immunoglobulin levels, and clinical history.
The SPEP Panel (white immunofixation, when	ch includes serum (indicated) should b	protein electrophoresis, immunoglobulins G, A, M, total protein, and reflex be ordered.
Please click Accept b	elow to:	
Please click Accept be • Remove the SPEF • Order the SPEP P	elow to: ² with immunofixati Panel	ion order
Please click Accept b • Remove the SPEF • Order the SPEP P Remove the following	elow to: ^D with immunofixati Panel orders?	ion order
Please click Accept be • Remove the SPEF • Order the SPEP P Remove the following Remove	elow to: ? with immunofixati anel orders? Keep	ion order
Please click Accept be • Remove the SPEF • Order the SPEP P Remove the following Remove Apply the following?	elow to: ^D with immunofixati Panel orders? Keep	SPEP panel with immunofixation Routine, Lab Cotlect
Please click Accept b • Remove the SPEF • Order the SPEP P Remove the following Remove Apply the following? Order	elow to: P with immunofixati Panel orders? Keep Do Not Order	ion order
Please click Accept be • Remove the SPEF • Order the SPEP P Remove the following Remove Apply the following? Order Acknowledge Reason	elow to: P with immunofixati anel orders? Keep Do Not Order	ion order SPEP panel with immunofixation Routine, Lab Collect SPEP panel
Please click Accept be • Remove the SPEF • Order the SPEP P	elow to: ⁹ with immunofixati Panel	ion order
Please click Accept by • Remove the SPEF • Order the SPEP P Remove the following Remove Apply the following? Order	elow to: P with immunofixati Panel orders? Keep Do Not Order	ion order
Please click Accept by • Remove the SPEF • Order the SPEP P Remove the following Remove Apply the following? Order Acknowledge Reason	elow to: P with immunofixati Panel orders? Keep Do Not Order	ion order

- Due to leveraging our <u>existing</u> EHR infrastructure the alert took < 5 hours of total effort including design, build, testing, monitoring and change management
- 85% of the time providers accept the laboratory's advice
- Annual savings of over \$40,000 per year at a single hospital with this one alert

Example: Automation of Data Collection and Monitoring

Reusable dashboards and data models that are interactive and shorten the build cycle (<u>none</u> built by the laboratory but many now heavily used by lab)

MGH Reference Laboratory Testing 2011-2018

The Need for Informatics

- Millions of results per year
- Reported 24/7 with high levels of auto-verification
- Rate of *data* production exceeds capacity of clinicians, pathologists and technologists to generate *information*
- The human brain is not well equipped to process high dimensional data
- Computational techniques needed

Desired Black Box

Refuse or add comment

spurious

real
Pre-intervention, technologist judgment identified spurious results only 9% of time (**9% sensitivity**)

Parameters Supplied in Building Tree	Data Set	Spurious Correctly Classified	Total Spurious	Real Correctly Classified	Total Real	Sensitivity (95% CI) %	Specificity (95% CI) %
Current Na, K, Cl, Bicarb, Anion Gap, Glucose	Training	57	64	84	92	89 (79-95)	91 (84-96)

Implemented algorithm performed prospectively on real patients with 74% sensitivity and with 100% specificity

Machine Learning, Step by Step

Model Selection

Selected Options

Linear methods Ordinary least squares regression Logistic regression Perceptrons

Decision trees

Recursive portioning trees Ensemble methods (random forest)

Artificial neural networks

Support vector machines

Neural Networks

Considerations

- Data types
- Classification vs. regressions
- Complexity vs. data size
- Intuitiveness of output

- In practice often try multiple models
- Sometimes use an aggregate across various model types as final output

In prior example, we used recursive partition to produce interpretable decision trees

Machine Learning Based Multi-analyte Delta Checks Outperform Individual Analytes for Wrong Blood in Tube (WBIT) Detection

© 2019 College of American Pathologists. Materials used with permission of faculty.

Machine Learning

- Clinical protocols developed using machine learning techniques have improved the laboratory's identification and annotation of spurious results, anomaly detection, and WBIT errors.
- We have used similar techniques to develop EHR implementable rules for ordering alerts
 - e.g. Used machine learning to develop algorithm to suggest discontinuing peripheral blood flow cytometry orders when not indicated
- In addition to test result interpretation, machine learning can be used to predict test results

- Eliminate redundant testing: Tests that can be accurately predicted to be normal or abnormal may not be needed (improve utilization)
- **2. Detect anomalies:** When the actual results are discrepant from predicted results, investigate and may report test results with a comment (improve interpretation)
- **3. Avoid overlooked diagnoses:** Alert clinicians when tests are not ordered but are predicted to be abnormal (avoid missed diagnosis)

We used Ferritin in a proof-of-concept for test prediction

• Ferritin

- A marker of iron stores
- Used in the diagnosis of iron deficiency
- Must be interpreted in the setting of other clinical and laboratory data
 - Decreased in iron deficiency
 - Increased in inflammation

"(Lab test) prediction is difficult, especially about the future"

Ferritin Methods Overview

Ferritin Classification Performance

Accuracy of Predicted Ferritin Results

Am J Clin Pathol. 2016 :778.

© 2019 College of American Pathologists. Materials used with permission of faculty.

Ferritin: Case Review

Conclusion: Predicted ferritin may more accurately reflect underlying iron status in some patients → potential application to clinical decision support

Case	Ferritin	Predicted Ferritin	Impression	Comment
1	230	21	Iron deficiency, not clinically identified	Ferritin increased secondary to inflammation
2	197	19	Recovering iron deficiency	Receiving IV iron therapy
3	1768	9	Limited predictive data	 Only two predictor tests available Decision support will likely require a minimum number of predictor tests
4	197	19	Complex hematologic picture	Referral to hematology would have likely been useful had the testing been ordered by a non-specialist

Am J Clin Pathol. 2016 :778. © 2019 College of American Pathologists. Materials used with permission of faculty.

Ferritin Prediction: Potential Applications

1. Detecting anomalies:

Report test results with a comment when discrepant from predictions

- 2. Avoiding overlooked diagnoses: Alert clinicians when tests are not ordered but predicted to be abnormal
- 3. Eliminating redundant testing: Tests that can be accurately predicted may not be needed

This ferritin result is inconsistent with other testing. Do not exclude a diagnosis of iron deficiency on the basis of the ferritin alone.

Test results indicate the possibility of iron deficiency. Consider ordering ferritin if clinically indicated.

But what about the temporal component?

- Many existing methods for analyzing time series are not well-adapted to laboratory data
- Clinical laboratory data is
 - "Sampled" irregularly and often sparsely
 - Of high dimensionality
 - Not sampled at random

© 2019 College of American Pathologists. Materials used with permission of faculty.

Develop the methods and models to accomplish the following:

2 patients with Na, K, Cl measured on days 0-3

- Day 4 values = imputations with confidence intervals
- Patient 1 might not need this testing
- Patient 2 needs day 4 electrolyte testing since values may be abnormal

Traditional Reference Ranges are Inadequate for AKI Detection

^{© 2019} College of American Pathologists. Materials used with permission of faculty.

Am J Clin Pathol. 2015, 143:42.

Using 3D-MICE, Future Lab Tests Can Be Predicted With High Accuracy Using Trends and Ancillary Data

© 2019 College of American Pathologists. Materials used with permission of faculty.

- Instead of alerting providers that their patients are now in early acute kidney injury (AKI), alert providers that in 24 hours their patients will likely satisfy criteria for AKI
- Alert suppressed if calculation of prediction interval width is too wide
- Requires real time data access for data analysis

JAMIA 2018: 25(6):645-653.

AKI Prevention Trial: Combining Analytics with Traditional Laboratory Evaluations

- New biomarkers for acute kidney injury (e.g. NGAL) may be accurate but are high cost and indications are unclear
- If we add to the EHR inpatient menu we can guarantee ourselves a \$300,000 cost for testing without clear evidence of improved outcomes
- Hypothesis: One way of efficiently using new biomarkers may be to add them on as a reflex test when prediction criteria have been satisfied
- In the current study when the algorithm predicts a patient will likely meet renal failure criteria in 24 hours → Add NGAL to assess for kidney injury now

"Tomorrow's creatinine"

Informatics to Improve Clinical Outcomes

Informatics can provide the tools to address a wide variety of clinical and operational issues

- Pathologists should engage with and become educated in the capabilities of their EHR
- Most groups already have the infrastructure, pathologists need to step up to the EHR table
- Partnering with computational colleagues can provide mutual benefit but learning the basics yourself is important to be able to frame the questions you want to ask

Thank You

MGH Pathology

- Jason Baron, MD
- Kent Lewandrowski, MD
- Matt Rosenbaum, MD
- Joe Rudolf, MD
- Peter McCaffrey, MD
- Danielle Kurant, MD

MGH Medicine

- Hasan Bazari, MD
- Xingxing Cheng, MD
- Ishir Bhan, MD

© 2019 College of American Pathologists. Materials used with permission of faculty.

MIT Computer Science and Artificial Intelligence (CSAIL)

- Yuan Luo, PhD
- Peter Szolovits, PhD

MGPO

• Jeff Weilburg, MD

Partners Healthcare

- Irina Kamis
- Balaji Singh
- Dustin McEvoy
- Sayon Dutta, MD

CAP19 Knowledge Relationships Expertise

CAP19

Knowledge Relationships Expertise

S1953S

A Glimpse into the Future Practice: Transitioning to an Effective Pathology Practitioner in the Age of Machine Learning

Anand S. Dighe, MD, PhD Barbara S. Ducatman, MD, FCAP Michael D. Feldman, MD, PhD Andrew R. Janowczyk, PhD

Digital Workflow and ML/AI

Whole Slide Imaging Versus Microscopy for Primary Diagnosis in Surgical Pathology: A Multicenter Blinded Randomized Noninferiority Study of 1992 Cases (Pivotal Study)

The American Journal of Surgical Pathology: November 2017

Difference in Major Discordance Rate = Digital minus Optical

© 2019 College of American Pathologists. Materials used with permission of faculty.

MSK Whole slide imaging equivalency and efficiency study: experience at a large academic center Mod Path Feb 2019, Sirintrapun et al

Breast		Genitourinary		Gynecologic		Gastrointestinal	
Breast	80	Prostate	119	Cervix	13	Stomach	12
Lymph node	28	Bladder	19	Uterus	10	Colon	10
Other	6	Kidney	8	Fallopian tube	9	Rectum	10
		Ureter	1	Ovary	4	Gallbladder	5
Bone and soft tissue		Urethra	2	Vulva	2	Liver	5
Soft tissue	12	Testis	4			Pancreas	4
Bone 9		Lymph nodes	4	Dermatopatholo	ogy	Esophagus	3

Table 3 List of specimens in each respective subspecialty

Table 5 Summary of intraobserver concordance and turnaround times of glass and digital reporting

Equivalence	iquivalence Concordance Diagnosis 99.3% fize 4.1% larger by digital measurements Brade 94.10% Aargin 100%	Efficiency ^a				
Concordance			Glass (HH: MM:SS)	Digital (HH: MM:SS)		
Diagnosis	99.3%	Pathologist A	6:17:12	8:48:23		
Size	4.1% larger by digital measurements	Pathologist B	2:41:15	3:37:46		
Grade	94.10%	Pathologist C	4:30:57	4:09:05		
Margin	100%	Pathologist D	5:05:01	5:18:49		
LVI/PNI	83.80%	Pathologist E	3:06:29	5:00:11		
рТ	97.30%	Pathologist F	7:19:07	8:22:05		
pN	97.10%	Pathologist G	5:49:31	7:37:20		
		Pathologist H	5:02:30	5:53:12		

"Median time difference was 19 s longer per whole slide image and © 2019 QCTegtange/meridightPathologists. Materials used with permission of faculty.

Unmet Need

- Transition to digital pathology workflows
 - Digital Quality Control is paramount
 - Recut and rescan slides immediately before getting to a pathologist
 - Cost and efficiency savings
- > Previously not insurmountable
 - Increasingly too time consuming to do manually
 - Non-reproducible

© 201

Slides taken from diagnostic cohort of TCGA-BRCA

We need better quality control of our slides!

HistoQC Properties

- Fast: n=1,143 in 466 minutes (24s/slide) using 6 cores (1.1TB)
- Easy "install" (git clone) with minimum dependencies:
 - python-openslide, matplotlib, numpy, scipy, skimage, sklearn
- User interface is a single local html5 + JS file, no hosting
- No specialized hardware
- No internet connection required
- Designed to be modular and easily extendible

© 2019 College of American Pathologists. Materials used with permission of faculty.

HistoQC...Your Pixels Matter

HistoQC: reproducible slide quality metrics with artifact localization

github.com/choosehappy/HistoQC

andrew.janowczyk@case.edu andrewjanowczyk.com

HistoQCRepo.com

Gold in the hills... Role of Tumor Morphology ER+ Breast Ca

- Modified Bloom-Richardson (mBR) grading (Elston and Ellis, 1991)
 - Tubule formation, nuclear pleomorphism, mitotic activity
- mBR identifies tumors as low, intermediate and high grade.
- Correlation between tumor Grade and outcome
- Visually determined, qualitative
- High inter- and intra-observer variability
 - Among 7 pathologists: k = 0.50 0.59 (Meyer et al., 2005)
 - Between pathology departments: k = 0.51 to 0.54 (Boisen et al., 2000)
- <u>Suboptimal treatment</u> can result from incorrect grading (Dalton et al., 2000)

IbRiS: Comparing against Oncotype Dx RS

© 2019 College of Journal Path Informatics 2011 (a Madabhushi, Feldman et al

Ibris and outcomes ECOG 2197

	Assay	% of patients with no recurrence after 10 years classified as low-risk	10-year recurrence rate in low-risk group	
	IbRiS	37.5%	17.2%	
	ODx	56.3%	20.0%	
rica	IbrRs ath ob xgist	350% terials used with permi	200% of faculty.	

© 2019 College of American

Findings Cancer – Deep learning

© 2019 Collection Sci. Reports 2017 Apr. 18;7:46450; Madabhushi et al

Breast cancer maps

False positives a. DCIS

b. Sclerosing lesions

False negatives a. Small areas of invasion

Data set	Dice	рру	NPV	TPR	TNR	FPR	FNR
TCGA	0.7586 ± 0.2006	0.7162 ± 0.2204	0.9677 ± 0.0511	0.8691 ± 0.1582	0.9218 ± 0.0764	0.0782 ± 0.0764	0.1309 ± 0.1582
NC	N/A	N/A	1 ± 0	N/A	0.9964 ± 0.0110	0.0036 ± 0.0110	N/A

Table 1. Performance measures for the ConvNet classifier on the TCGA (pathological, N=195) and NC (normal, N=21) data conorts. The measures included Dice, PPV, NPV, TPR, TNR, FPR and FNR. Note that for the normal cases considered, not all the performance measures are shown because the NC data cohort did not have cancer annotations.

Finding Lymph node mets ISBI 2016 CAMELYON 2016/17

Lymph node detection breast cancer

Table 1. Characteristics of the Whole-Slide Images and Glass Slides in the Data Sets Used in the CAMELYON16 Challenge

Data Set	Hospital Providing	Primary Tumor Histotype ^b		Slides Cor	ntaining Metast	ases, No.	No. of Lesions	Total Slider	
(N = 399 Stides and Images) ^a Training	the Slides and Images	IDC	Non-IDC	None	Macro	Micro	Median (Range)	or Images	
Training	RUMC	54	16	100	35	35	2 (1-20)	170	
(n = 270 images)	UMCU	30	10	60	26	14	3 (1-27)	100	
Test	RUMC	23	6	50	14	15	2 (1-14)	79	
(n=129 slides and images)	UMCU	15	5	30	8	12	3 (1-25)	50	

Abbreviations: CAMELYON16, Cancer Metastases in Lymph Nodes Challenge 2016; IDC, infiltrating ductal carcinoma; RUMC, Radboud University Medical Center; UMCU, University Medical Center Utrecht. Analyses in the test were determined with whole-slide images by the algorithms and with glass slides by the panel of 11 pathologists (because diagnosing is most commonly done using a microscope in pathology labs).

^a All analyses in the training set were determined with whole-slide images.

^b Primary tumor histotypes included IDC and other histotypes (non-IDC).

11 Pathologist with time constraint or without time constraint compare to different machine learning algorithms (23 teams, 32 models)

Machine vs person	Performance (ROC)
Pathologist	0.966 (3.4% misses) WOTC
Harvard (Best algorithm)	0.925 (7.5% misses)
Combination Man + Machine	0.994 (0.6% misses)
Dual Neural net	0.994

Input &	Va	lidatio	n	Test							
model size	FROC	@8FP	AUC	FROC	@8FP	AUC					
40X	98.1	100	99.0	87.3 (83.2, 91.1)	91.1 (87.2, 94.5)	96.7 (92.6, 99.6					
40X-pretrained	99.3	100	100	85.5 (81.0, 89.5)	91.1 (86.8, 94.6)	97.5 (93.8, 99.8					
40X-small	99.3	100	100	86.4 (82.2, 90.4)	92.4 (88.8, 95.7)	97.1 (93.2, 99.8					
ensemble-of-3		-	-	88.5 (84.3, 92.2)	92.4 (88.7, 95.6)	97.7 (93.0, 100)					
20X-small	94.7	100	99.6	85.5 (81.0, 89.7)	91.1 (86.9, 94.8)	98.6 (96.7, 100)					
10X-small	88.7	97.2	97.7	79.3 (74.2, 84.1)	84.9 (80.0, 89.4)	96.5 (91.9, 99.7					
40X+20X-small	94.9	98.6	99.0	85.9 (81.6, 89.9)	92.9 (89.3, 96.1)	97.0 (93.1, 99.9					
40X+10X-small	93.8	98.6	100	82.2 (77.0, 86.7)	87.6 (83.2, 91.7)	98.6 (96.2, 99.9					
Pathologist [1]	-	-	-	73.3*	73.3*	96.6					
Camelyon16 winner [1,23]	1.4	-	-	80.7	82.7	99.4					

FROC=sensitivity at various FP rates @8FP is FN rate at 8FP per slide

Table 1. Results on Camelyon16 dataset (95% confidence intervals, CI). Bold indicates results within the CI of the best model. "Small" models contain 300K parameters per Inception tower instead of 20M. -: not reported. *A pathologist achieved this sensitivity (with no FP) using 30 hours.

Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic **Breast Cancer** AJSP 42(12): 2018 Stumpe et al

LYNA (AUC 38 55.) • Unassisted Accherch

I YNA LAINT BE RM.

0.08 0.10

Assisted

10

10

Terabyte-scale Deep Multiple Instance Learning for Classication and Localization in Prostate Pathology

19

Rescreening for prostate cancer Ibex inc.

Maccabi Healthcare Services is a large healthcare provider with a centralized pathology institute - 120,000 histology accessions per year

- ~700 prostate core needle biopsies (PCNBs)
- Roughly 40% of the PCNBs are diagnosed with cancer.

IBEX Medical Analytics, whole slide images of PCNBs, including cancerous glands (of Gleason patterns 3, 4 and 5), high-grade PIN and inflammation. The algorithm utilizes state-of-the-art Deep learning CNN, trained on many thousands of image samples, taken from hundreds of PCNBs from multiple institutes, and manually annotated by senior pathologists.

Small study shown at ECDP 2018 in Helsinki – 100 retrospective cases that had been diagnosed as benign, and found two three errors

- In two cases, the algorithm identified small foci of Gleason 3. Placed into watchful waiting groups. Two years later, both patients were diagnosed with higher grade cancer and underwent radical prostatectomy.

- Third case was a larger focus of pseudo-hyperplastic CAP, resection showed a CAP(4+3) confined to prostate.

System now used to rescreen all negative core prostate biopsies

- New workflow, AI has 30-40% false positive rate – pathologist then reviews specific cores identified by hotspots to decide if any lesion needs further workup or staining

Problems with Al

Brittle

- Most published papers are small data sets that don't always validate well

Deep Mitoses – training vs validation very different

Table 4

Performance comparison of DeepDet with other competing approaches on 2012 MITOSIS test set.

Method	Precision	Recall	F-score
DeepDet	0.854	0.812	0.832
RRF (Paul et al., 2015)	0.835	0.811	0.823
CasNN (Chen et al., 2016a)	0.804	0.772	0.788
HC+CNN (Wang et al., 2014)	0.84	0.65	0.735
IDSIA (Cireşan et al., 2013)	0.886	0.70	0.782
IPAL (Irshad et al., 2013)	0.698	0.74	0.718
SUTECH (Tashk et al., 2013)	0.70	0.72	0.709
NEC (Malon et al., 2013)	0.75	0.59	0.659

Medical Image Analysis 45 (2018) 121–133

Table 5

Performance results of our methods on 2014 MITOSIS validation set.

Method	F-score
DeepDet (fixed)	0.489
DeepDet+Seg	0.505
DeepDet+Seg+Ver(c)	0.559
DeepDet+Seg+Ver(f)	0.572

Path Rads integration

See the bigger picture

Central PACS	

High volume

- Workload balancing
- · Access to subspecialists

Common Workflow

- Synoptics
- Data from Image
- Compute on Image
- FTE
- Server/Storage
- EMR/LIS interface
- AI/ML

Low volume

- Consultations to anyone
- Second opinion

Industry timeline digital pathology

Gen1	Gen4-5	Gen6	
1998 60 min scan \$\$\$	2017 FDA	2018 <60 s scan Z axis coming \$\$\$\$	V1.0
		Computational Photonics 5 min Z axis \$	V1.5
		Slidefree imaging 2-3 min experimental	V2.0

New imaging modalities coming

© 2019 College of American Pathood State National State of American Pathood State National State of St

^{1.2} NA

Light-sheet Fluorescence Microscopy

Liu et al, Nature Biomed 2017

Digital Pathology is not just images

- Treanor et al 2014 time and motion studies •
 - -1/4-1/2 of time is looking through medical record for data
 - How do we make data gathering more precise, more focused and faster?
 - Center healthcare Innovation EHR extensions
 - Yevgeniy Gitelman, Katherine Choi Oncology, Pathology, Radiology, 70

28

			Contextual	Scope + Data Feasibility	Prototype +	Build + Iterate
Exploring	FHR	Extensions				
					3	
Feasibility Design	59 yo F MRN	Breast Pathologic: 10/19/2017 edited on 10/20/2017 - Stage IV (17: N14, M1 ER+, PR+, HERe) Breast Pathologic / 61/2000 edited on 10/20/2017 - Infiltrating dust particiones, NOS - State IIS (17: N14, M0 ER+, PR+, HER2)	Custo	om filters b	y e	
			type	or smarter		
	Pathology	Solid Tumor NGS Report Surgical Pathology Report	giou	Robrtant		
Notes, Imaging,	✓ Notes	Progress Notes	2000 06-21 Prim ry Si	Diagnosis In sist, contrali portion (CSD, 1) Hilaopathologi		
and Surgical	1 2019-02-05 · Progress M	iotes - Shulman, Lawrence N	V05) State		20	
Pathology on	1 + 2018-12-18 - Progress N	lotes – Shuiman, Lawrence N	Chemother 5	pecific		
Pathology	1 + 2018-11-30 · Progress N	lotes - Raper, Steven	Surgery at 2001-03-0:	Intersori University Hospitali Inte		
one timeline	□ + 2018-02-13 · Progress N	otes – Lattimer-Greco Crmp, Jennie	2017-10-20 - 2.17	-10-23 Antineoplastic Drug Prescription	124	
chr 2 day	18-01-16 + Progress N	otes - Lattimer-Greco Crip, Jennie otes - Lattimer-Greco Crip, Jennie	2017-10-20 - 20	ontext		
CIIIOHOIOgy	> 2018-01-16 - Progress N	otes – Lattimer-Greco Cring, Jennie	2017-10-20 - Treatm Hormonial Thereby			
Focus on the key 30%	+ 2017-10-12 · RP BONE Uneventful biopsy of the right	BOPSY It iliac bone lesion, under CT guidance. This procedure was performed under my personal supe	2017-10-20 · Treat	ligninghted		
3	A NDING RADIOLOGIST	AGREEMENT [ATTOS]: I have personally reviewed the images and agree with this report.	2017-10-23 - 2018 palbooidib	404-27 - Antineoplastic Drug Presonation		
Smart provious	2017-10-12 · Surgical Pa Includes final diagnosis	thology Report	2017-12-05 · Gener No variants identifie	nic Teslang d		
Sinart previews			2018-04-27 - 2018 palboocib	-10-09 - Antimeoplantic Drug Prescription		
show	Addendum Report		etrozoie 2018-10-09 - Antine	opisatic Drug Prescription		
"Improcession" for	Addendum Discussion Estrogen and Progesteron	e receptor immunohistochemistry:	pelbociclib 2018-12-06 - Anline	oplastic Drug Preaciplice		
impression for	The metastatic breast card	inoma is POSITIVE for estrogen receptor with 95%	2018-12-06 Antine	optastic Drug Prescription		
quick scanning	POSITIVE with 95% nucle	ar staining (Allred score 8).	letrozole			
Focus 40 the key 5%	Positive and negative cell	tissue controls were appropriate.				
	The assays were performe 510(k) cleared Ventana C4	ed on formical-fixed paraffin section using FDA DNFIRM antibodies on a fully automated Ventana				
Full reports for drill	BenchMark ULTRA autost case is considered ER or	ainer according to the manufacturer's guidelines. A PR positive if there is staining of the nucleus in				
run reports for unit	as the sum of the staining	% of tumor cells. The Alfred score is calculated Intensity score (1 weak, 2 moderate or 3 strong)				
Eliminate non-clinical 50%	score of 8.	rivia, a zito io ita, a zita, and a zoa) with maximal				

ER Anlibody: CONFIRM anti-ER (SP1), a monoclonal rabbit antibody recognizing ER alpha, has been shown to react with 66 kD protein from MCF-7 cells via Western blotting and the protein size is in agreement with that

Conclusions

- FDA clearance is only a beginning
- Machine learning will accelerate
 - Targeted review
 - Rare event detection
 - Tumor finding
 - Feature classification
 - o Grading
 - Screening/Rescreening
 - Outcome prediction
 - qIHC, qMultiplex
- Large well curated and annotated datasets are platinum
- Data Science is our future
 - AI and ML are key to unlock our data
 - Path-Rads integration is our future
 - New technologies coming
- Business new models of practice

Case Western Lab Director: Anant Madabhushi, PhD Postdocs: James Monaco, PhD Gaoyu Xiao, PhD Jun Xu, PhD Andrew Janowczyk, PhD Graduate Students: Jonathan Chappelow Scott Doyle Satish Viswanath Pallavi Tiwari George Lee Shannon Agner Ajay Basavanhally Rob Toth Andrew Janowczyk Undergraduate Students Jay Naik Hussain Fatakdawala Amod Jog

Penn Clinical Collaborators Mitch Schnall, MD, PhD David Roth, MD, PhD John E Tomaszewski, MD William Lee, MD Natalie Shih, MD

<u>Clinical Collaborators</u> Shridar Ganesan, MD, PhD

Penn Center Clinical Innovation Roy Rosin Yevgeniy Gitelman, MD Katherine Choi

Introduction To Machine Learning Using Examples From Anatomic Pathology

September 24, 2019

Andrew Janowczyk, PhD Assistant Research Professor

Center for Computerized Imaging and Personalized Diagnostics

Outline

- What are images?
- What can be done with them?
- Feature extraction
- Intuition behind Classifiers
 - Real world examples
- Important considerations
 - Types of annotations
 - Batch effects
 - Quality Control
- If anything is unclear, let me know!

Center for Computerized Imaging and Personalized Diagnostics

Digital pathology images are pixels

Center for Computerized Imaging and Personalized Diagnostics

Images are 3D matrices of Pixels Width x Height x [Red Green Blue]

R:142	R:134	R:135	R:134	R:131	R:131	R:130	R:129	R:129	R:133	R:139	R:147	R:153	R:157	R:154	R:153
G:100	G: 99	G: 97	G: 94	G: 90	G: 85	G: 81	G: 78	G: 78	G: 82	G: 89	G: 97	G:106	G:110	G:109	G:108
B:166	B:157	B:156	B:154	B:150	B:149	B:147	B:147	B:147	B:148	B:152	B:156	B:161	B:164	B:164	B:165
R:127	R:121	R:121	R:122	R:122	R:125	R:127	R:129	R:132	R:137	R:143	R:151	R:153	R:152	R:146	R:138
G: 79	G: 81	G: 79	G: 78	G: 76	G: 74	G: 76	G: 78	G: 79	G: 88	G: 94	G:103	G:108	G:108	G:102	G: 95
B:153	B:144	B:142	B:141	B:138	B:140	B:143	B:147	B:151	B:154	B:159	B:163	B:163	B:161	B:155	B:149
R:116	R:115	R:117	R:119	R:124	R:127	R:130	R:132	R:134	R:130	R:136	R:146	R:147	R:144	R:136	R:132
G: 61	G: 58	G: 60	G: 64	G: 67	G: 70	G: 70	G: 71	G: 72	G: 82	G: 92	G:105	G:109	G:102	G: 89	G: 77
B:142	B:129	B:128	B:122	B:122	B:125	B:130	B:138	B:145	B:156	B:167	B:181	B:184	B:174	B:157	B:144
R:104	R:108	R:114	R:122	R:127	R:130	R:129	R:130	R:130	R:132	R:135	R:140	R:141	R:137	R:130	R:122
G: 51	G: 54	G: 60	G: 68	G: 74	G: 75	G: 74	G: 71	G: 71	G: 81	G: 89	G: 98	G:102	G: 96	G: 84	G: 70
B:121	B:116	B:120	B:126	B:130	B:132	B:132	B:135	B:137	B:147	B:154	B:164	B:167	B:162	B:148	B:132
R: 98	R:103	R:113	R:126	R:136	R:138	R:135	R:130	R:127	R:134	R:134	R:133	R:134	R:132	R:126	R:117
G: 44	G: 55	G: 64	G: 76	G: 84	G: 86	G: 80	G: 76	G: 73	G: 79	G: 83	G: 88	G: 93	G: 91	G: 82	G: 69
B:104	B:105	B:119	B:135	B:146	B:150	B:145	B:138	B:133	B:136	B:140	B:145	B:151	B:151	B:141	B:127
R:103	R:106	R:119	R:135	R:145	R:147	R:142	R:136	R:131	R:137	R:134	R:131	R:133	R:137	R:135	R:124
G: 52	G: 62	G: 71	G: 86	G: 95	G: 95	G: 90	G: 83	G: 79	G: 76	G: 77	G: 80	G: 88	G: 93	G: 91	G: 79
B:111	B:115	B:129	B:152	B:168	B:170	B:164	B:153	B:145	B:133	B:132	B:137	B:147	B:154	B:154	B:144
R:118	R:118	R:126	R:138	R:150	R:153	R:150	R:144	R:139	R:139	R:135	R:134	R:139	R:147	R:149	R:140
G: 67	G: 72	G: 79	G: 90	G: 99	G:101	G: 97	G: 92	G: 87	G: 75	G: 73	G: 78	G: 88	G:100	G:103	G: 96
B:134	B:137	B:147	B:164	B:178	B:183	B:177	B:167	B:161	B:136	B:136	B:141	B:154	B:168	B:175	B:171
R:132	R:132	R:136	R:143	R:151	R:157	R:157	R:152	R:146	R:144	R:140	R:140	R:147	R:155	R:156	R:149
G: 84	G: 84	G: 85	G: 92	G:101	G:105	G:105	G: 98	G: 92	G: 79	G: 78	G: 81	G: 92	G:104	G:108	G:102
B:160	B:160	B:160	B:167	B:174	B:179	B:179	B:174	B:170	B:145	B:143	B:147	B:159	B:173	B:182	B:180
R:144	R:146	R:145	R:147	R:154	R:164	R:165	R:161	R:154	R:151	R:147	R:146	R:149	R:155	R:153	R:142
G:102	G: 94	G: 93	G: 97	G:105	G:114	G:114	G:106	G: 98	G: 87	G: 86	G: 86	G: 94	G:101	G:102	G: 95
B:178	B:176	B:167	B:160	B:160	B:167	B:171	B:173	B:171	B:148	B:146	B:146	B:152	B:163	B:169	B:167

Pixels can have operations done on them

Processing and Filtering:

- Taking a pixel
- Perform a function
- New Value

Center for Computerized Imaging and Personalized Diagnostics

Can convert from RGB to Grayscale

- Pixel by pixel Linear equation
- Gray = 0.2989 * R + 0.5870 * G + 0.1140 * B

Center for Computerized Imaging and Personalized Diagnostics

Can apply a threshold

- Images range from [0 = black ,1 = white]
- ➢ Values < .5</p>

Center for Computerized Imaging and Personalized Diagnostics

Pixels can have operations done on them

Processing and Filtering:

- Taking a pixel
- Look at its neighbors
- Perform an operation

Center for Computerized Imaging and Personalized Diagnostics

Can reduce noise by smoothing

> Each pixel is replaced by the mean value around it

Can look at values as a collection

Precisely quantify familiar image properties

Average Brightness: 140.7963

CASE SCHOOL OF ENGINEERING CASE WESTERN RESERVE UNIVERSITY

Center for Computerized Imaging and Personalized Diagnostics

Can look at values as a collection

Precisely quantify familiar image properties

Center for Computerized Imaging and Personalized Diagnostics

Filtering and Processing using operations

➢ For example, can identify edges by subtracting adjacent pixels
➢ 0 − 0 = 0, 1 − 1 =0, 1 − 0 = 1, 0 − 1 = 1

Center for Computerized Imaging and Personalized Diagnostics

Example edge detection in DP space

Center for Computerized Imaging and Personalized Diagnostics

These outputs lead to features

- Domain relevant
- Used in grading schemes
- Properties
 - Size
 - Shape
 - Texture
- More precise quantification as features
 - Eccentricity (how circular)
 - Length major/minor axis
 - Orientation
 - Staining intensity
 - Smoothness
 - Entropy

Center for Computerized Imaging and Personalized Diagnostics

Texture Features

- Stroma region is "smooth"
- Measure of homogeneity
- Neighboring pixels are similar
- Small gradient between them

- Other regions more "rough"
- Measure of heterogeneity
- High amounts of entropy
- Larger and unpredictable gradients

Center for Computerized Imaging and Personalized Diagnostics

Graph Features

- Can think of it in terms of connectivity
- > At the object level:
 - How many neighbors do I have in a defined radius?
 - Average length away?
- Measurement for infiltration
 - How far am I away from a boundary?
 - How far am I away from a cancer cell?

Center for Computerized Imaging and Personalized Diagnostics

Remarks on features

- Try to avoid throwing the "kitchen sink" at a problem
- Start with a "reasonable" subset
- Based on:
 - Domain expertise
 - Grading schemes

Center for Computerized Imaging and Personalized Diagnostics

Approaches using features

- Active contours
- > Keep expanding boundary of an initial box while:
 - Inside is homogenous
 - No edge detected

Center for Computerized Imaging and Personalized Diagnostics

What can we do with features?

- Measure difference between classes
- Quantify differences:
 - Benign vs Malignant
 - Subtypes
 - Outcome
 - Therapy Response

Center for Computerized Imaging and Personalized Diagnostics
Feature extraction

Center for Computerized Imaging and Personalized Diagnostics

Center for Computerized Imaging and Personalized Diagnostics

Goal of the model

- Fit training data well
- Generalize to Testing data
- If identified something biologically relevant and "true"
 - should be consistent
- > Can we improve the model by adding dimensions?

Center for Computerized Imaging and Personalized Diagnostics

Center for Computerized Imaging and Personalized Diagnostics

This problem only gets worse

- > The more dimensions, the larger the solution space is
- A lot of noise as well
 - Measurements
 - Labels
- Optimization is hard and time consuming
- Is there anything we can do to help?

Center for Computerized Imaging and Personalized Diagnostics

Difference Machine vs Deep Learning?

Machine Learning:

- Explicitly provide feature measurements: e.g., Area, Circularity

Deep Learning:

- Self-discover the features

Both approaches require good quality examples

Center for Computerized Imaging and Personalized Diagnostics

What kind of examples are best?

- Near to decision boundary!
- Information rich
- Cancer vs non-cancer

Not cancer Not informative Not cancer Informative Cancer Informative

Don't need 10000s of these!!!

Center for Computerized Imaging and Personalized Diagnostics

Center for Computerized Imaging and Personalized Diagnostics

Cell Orientation Entropy (COrE) Features Stratify More and Less Aggressive Prostate Cancer on Tissue Microarrays

Aggressive cancer (left) shows more disorder in orientation of the nuclei compared to less aggressive cancer (right)

Lee, G, Ali, S, et al., "Cell Orientation Entropy (COrE): Predicting Biochemical Recurrence from Prostate Cancer Tissue Microarrays", In Proc of Medical Image Computing and Computer Assisted Interventions (MICCAI), vol. 3, pp. 396-403, 2013.

Personalized Diagnostics

Cell Cluster Graph for Prediction of Biochemical Recurrence in Prostate Cancer Patients from Tissue Microarrays

- Novel Cell Cluster graph (CCG) that can quantify tumor morphology
- Extracted features from CCG can predict Biochemical recurrence in Prostate Cancer in 80 patients.

Voronoi	Delaunay	CCG
$67.1 \pm 1.8\%$	$60.7\pm0.9\%$	$83.1 \pm 1.2\%$

Table 2. Comparison of CCG against other graph based methods in predicting biochemical failure.

Ali, Sahirzeeshan, Veltri, Robert, Epstein, Jonathan, and Madabhushi, Anant "Cell Cluster Graph for Prediction of Biochemical Recurrence in Prostate Cancer Patients from Tissue Microarrays", SPIE Medical Imaging, 2013. (In Press)

Center for Computerized Imaging and Personalized Diagnostics

Computerized nuclear features predict recurrence in lung cancer

Xiangxue Wang, Andrew Janowczyk, Yu Zhou, Sagar Rakshit, Vamsidhar Velcheti, Anant Madabhushi*, "Computer extracted features of nuclear morphology from digital H&E images are predictive of recurrence inistage wand stage dinon-small cell lung cancer" Nature Scientific Reports 2017

Spatial arrangement of tumor infiltrating lymphocytes (TILs) predict response to Nivolumab in non-small cell lung cancer (NSCLC)

Hypothesis: Spatial arrangement of TILs and local density variance are highly correlated to the patient response.

Data sets:

Two independent data (whole slide image) acquired from UPenn (32) and CCF (24)y

TIL detection and image feature extraction

Top 5 most significant features obtained by feature selection

- 1. Median of TILs formed areas
- 2. Ratio of Cancer cells to TILs cells
- 3. Cancer cell averaged Density
- 4. Density of TILs
- 5. Median of Cancer cell formed areas

A QDA classifier was trained using a Training set (n=32) and a independently validation set from a different institution (n=24).

Wang, X, Barrera, C, Velu, P, Bera, K, Prasanna, P, Khunger, M, Khunger, A, Velcheti, V, Madabhushi, A, "Computer extracted features of cancer nuclei from H&E stained tissues of tumor predicts response to Nivolumab in non-small cell lung cancer", American Society for Clinical Oncology (ASCO) Annual Meeting (Poster), Chicago, IL, 2018

Outline

- → What are images?
- ➤ What can be done with them?
- → Feature extraction
- → Intuition behind Classifiers
- Important considerations
 - Types of annotations
 - Batch effects
 - Quality Control

Center for Computerized Imaging and Personalized Diagnostics

- Detection
- Bounding box
- Segmentation

Center for Computerized Imaging and Personalized Diagnostics

- Detection Where is it?
- > Typically place dot in center
- Pros:
 - Fast and easy
 - Easy to score
- > Cons:
 - No size information
 - No shape information
- Use cases:
 - Mitosis detection
 - Lymphocyte detection

Center for Computerized Imaging and Personalized Diagnostics

- Bounding box Where and about how big is it?
- Smallest box which will surround object
- > Pros:
 - Give size information
 - Faster than segmentation
- > Cons:
 - Still no shape information
- Use cases:
 - ROI identification

Center for Computerized Imaging and Personalized Diagnostics

- Segmentation What are its borders?
- Precisely circle object at a pixel level
- > Pros:
 - All types of analysis are possible
 - Morphological analysis
- > Cons:
 - Very time consuming
 - Lots of noise: human error + ambiguity
- Use cases:
 - Nuclei segmentation

Center for Computerized Imaging and Personalized Diagnostics

60 minutes to gather annotations, how?

- Many images sparsely annotated
 - High image number, low density
- A few images fully annotated
 - Low image number, high density
- Multiple images with selected ROIs fully annotated
 - Modest image, modest density
- Last approach is the best!
 - More patient diversity
 - More region diversity
 - Likely to be "different" and informative

How to select the ROIs?

- Exploit domain knowledge
 - I know nuclei + lymphocytes appear similarly, try to find ROIs which have both present to challenge the classifier
- False positive sampling
 - Train a model
 - Use it on training data
 - See where errors occur
 - Hyper-sample those types of regions

- Ultimately, the classifier can tell you where its struggling by displaying poor performance!
- Target those types
 - Similar to teaching a student

CASE SCHOOL OF ENGINEERING

Personalized Diagnostics

© 2019 College of American Pathologists. Materials used with permission of

RESERVE

Outline

- → What are images?
- → What can be done with them?
- → Feature extraction
- → Intuition behind Classifiers
- Important considerations
 - Types of annotations
 - Batch effects
 - Quality Control

Center for Computerized Imaging and Personalized Diagnostics

Batch Effects

Confounding of non-biological signal with biological signal

Center for Computerized Imaging and Personalized Diagnostics

Batch Effects 2

- > You've done this grouping by color and appearance
- Not taken into account any biological information e.g., disease presentation
- Examine in practice
- Pathologist marked slide with dot
- Identify/scan (rare) samples
- Add in "undotted" samples
- Classifier learned to focus on dot
- Great performance on test set!
- Very poor performance on external set!

Center for Computerized Imaging and Personalized Diagnostics

How would Batch Effects present in DP

- Pre-scanning: stain intensity, thickness
- Scanning: brightness, compression, microns per pixel

Center for Computerized Imaging and Personalized Diagnostics

Potentially Likely (Worst) Situation

- > TMA created containing only high-risk patients
- > TMA created containing only low-risk patients
- > Any artifact will perfectly separate groups

Center for Computerized Imaging and Personalized Diagnostics

Unmet Need For Quality Control

- Transition to digital pathology workflows
 - Digital Quality Control is paramount
 - Recut and rescan slides immediately before getting to a pathologist
 - Cost and efficiency savings
- Previously not insurmountable
 - Increasingly too time consuming to do manually
 - Non-reproducible

Slides taken from diagnostic cohort of TCGA-BRCA

We need better quality control of our slides!

What is HistoQC?

- Open source reproducible slide quality metrics with artifact localization
- Python backend
 - identify artifacts and produce binary masks of "good" tissue
 - compute *actionable* quality scores and metrics
- > HTML5 front end for visualizing and investigating results
- Received innovation award at European Congress on Digital Pathology 2018
- JCO CCI April 2019, Available: <u>http://github.com/choosehappy/HistoQC</u>

<pre>contgint @ Morpholog/Module.gv @ cpipeline.gv @ colorcomv.gv @ colorcomv.gv</pre>			D HatsQc *			D						diami-	1
Image: Contrast C	🗾 config	ini 🛛 [🐻 MorphologyModule.py 👋 [💑 qc_pipeline.py 👋 [🐻 colorconv.py 🗙 [🐻 Base	← C △ ◎ Not secure 12922.136.73.000									Q,	*
<pre>steps= BasicModule.getBasicStats BasicModule.getBasicStats BasicModule.getBasicStats BasicModule.getBasicStats BasicModule.getBasicStats BasicModule.getBasicStats ClassificationModule.byExampleWithFeatures:pen_markings_red ClassificationModule.byExampleWithFeatures:coversIbp_edge #ClassificationModule.byExampleWithFeatures:coversIbp_edge #EubleRegionByRegion.pixeIWise LightDarkModule.getIntensityThresholdPercent:tbubble BasicModule.finalProcessingSpur BasicModule.finalProcessingSpur BasicModule.finalProcessingSpur BasicModule.getBrightnessErGTemplets HistogramModule.getBrightnessErGTemplets BrightContrastModule.getBrightnessErGTemplets BrightContrastModule.getBrightnessErGTemplets SaveModule.saveFinalMask S</pre>	1	[pipeline]	HistoQc Table Chart Image							Constitute and	nes Ser Segline About	Instruction R	aso:
 BasicModule.getMag ClassificationModule.byExampleWithFeatures:pen_markings ClassificationModule.byExampleWithFeatures:pen_markings ClassificationModule.byExampleWithFeatures:pen_markings ClassificationModule.getIntensityThresholdPercent:tusbue BubbleRegionByRegion.pixelWite LiphtDarkModule.getIntensityThresholdPercent:tusbue BurDetectionModule.fillShallBoles BurDetectionModule.fillShallBoles BirtoptContrastModule.getEntightnessByChannelinColorSpace:RBB BrightContrastModule.getEntightnessByChannelinColorSpace:RBB BrightContrastModule		steps= BasicModule.getBasicStats	filename 7 comments	levels	height 1 w	dth mpp_x	mpp_y	Magnification	pen_markings	coverslip_edge	nonwhite di	ink Copy	
 LightDarkModule. JyExampleWithFeatures: pen_markings ClassificationModule. JyExampleWithFeatures: pen_markings ClassificationModule. JyExampleWithFeatures: pen_markings ClassificationModule. JyExampleWithFeatures: pen_markings ClassificationModule. JyExampleWithFeatures: pen_markings LightDarkModule. getIntensityThresholdPercent: tubble LightDarkModule. getIntensityThresholdPercent: darktissue MorphologyModule. fillSmallRoles BasicModule. fillSmallRoles BasicModule. fillSmallRoles BasicModule. getErightnessSray BrightContrastModule. getErightnessGray 		ResicModule getMag	TCGA-A1-A0SD-012-00-DX1.DB178FA9-D951-42A8-91D2-F4C2EBC6EB9F.svs	4	80287 94	075 0.2521	0.2521	40	0.020865157541693442	0.01244133364784734	0.2598432039216643 0	Save	
 ClassificationModule.byExampleWithFeatures:pen_markings_red ClassificationModule.dyExampleWithFeatures:pen_markings_red ClassificationModule.getIntensityThresholdPercent:tissue BlubleRegionByRegion.pixelWise LightDarkModule.getIntensityThresholdPercent:tissue BlubPetectionModule.intentityBlurryRegions BasicModule.finalProcessingStrea HistogramModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.sepertarStains SaveModule.saveFinalMask SaveModule		ClassificationModule buEvampleWithFeaturesuper markings	TCGA-A1-A05I-01Z-00-DX1A8717348-F964-4F29-88E2-97287C640432.svs TCGA-A2-A04U-01Z-00-DX1A6717348-F964-4F29-88E2-97287C640432.svs	4	84072 9. 86726 1	155 0.2521 0424 0.2465	0.2521	40	0.0005399325381719748	0	0.41151913357018993 0	Deselect	
 4. (JassificationModule, byExampleWithRetures); permarking-red GlassificationModule, byExampleWithRetures; coversity-edge flightDarkModule.getIntensityThresholdPercent:tbubble LightDarkModule.getIntensityThresholdPercent:tissue HubbleRegionByRegionByRegions DiurDetectionModule.identifyBlurryRegions BasitModule.finalProcessingSpur BasitModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getErightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:RGB BrightContras		ClassificationModule.byExampleWithFeatures.pen_markings	4 pm								,	* Cols *	
 ClassificationModule.Joyckamplewithrestores:Fourses fLightDarkModule.getIntensityThresholdPercent:tubble LightDarkModule.getIntensityThresholdPercent:tubble LightDarkModule.getIntensityThresholdPercent:tubble LightDarkModule.getIntensityThresholdPercent:tubble LightDarkModule.getIntensityThresholdPercent:tubble LightDarkModule.getIntensityThresholdPercent:tubble LightDarkModule.getIntensityThresholdPercent:tubble LightDarkModule.getIntensityThresholdPercent:tubble MorphologyModule.fillSmallHoles BuitPetcettionModule.identifyBluryRegions BasicModule.finalProcessingSpur BasicModule.getBrightnessGray BrightContrastModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:RGB SaveModule.saveFinalMask SaveModule.saveFinalMask SaveModule.saveFinalMask Basi@90.ContrastModule.getBrightnessByChannelinColorSpace:YUV DeconvolutionModule.saveFinalMask SaveModule.saveFinalMask SaveModule.saveFinalMask SaveModule.saveFinalMask SaveModule.saveFinalMask 		#classificationModule.byExampleWithFeatures:pen_markings_red				drund						-	
 #LightDarkModule.getIntensityThresholdPercent:tubble LightDarkModule.getIntensityThresholdPercent:tissue #BubbleRejonByRegion.pixeIMise LightDarkModule.getIntensityThresholdPercent:darktissue MorphologyModule.fillSmallHoles BlurDetcitonModule.identifyBlurryRegions BasicModule.finalProcessingSpur BasicModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:YUV DeconvolutionModule.getFrightnessByChannelinColorSpace:YUV DeconvolutionModule.getFrightnessByChannelinColorSpace:YUV BasicModule.saveFinalMask SaveModule.saveTinumbasia BasicModule.getArmentam.Pathologists. Materials used with permission of faculty. 		ClassificationModule.byExamplewithFeatures:coverslip_edge	levels Bar ghart width mpp.X mpp.Y Magnitication markingship edgewhite dark	percent_smi	roent percent	forry pixels templa	tel MSE hist M	se hist week week	se hist contrast act grayscale pright	Dighting brighting brighting	Brighting Brighting Brightingt	to mean ci mean ci mean	2 mean
 LightbarkModule.getIntensityThresholdPercent:tissue HybbleRegionByRegion.pixelWise LightbarkModule.getIntensityThresholdPercent:darktissue MorphologyModule.fillSmallHoles BurDetectionModule.ifillSmallHoles BasicModule.finalProcessingSpur BasicModule.ompartOremplates HistogramModule.getBrightnessGray BrightContrastModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:RGB SaveModule.saveThmbnails SaveModule.saveThmbnails Basi@id90Qdleguid American:Pathologists.Materials used with permission of faculty. 		#LightDarkModule.getIntensityThresholdPercent:bubble	9.007 200 10 10 10 10 10 10 10 10 10 10 10 10 1	A 040	Aponto	and the				H H		100 mm	2
 HubbleRegionByRegion.pixelWise LightDarkModule.getIntensityThresholdPercent:darktissue MorphologyModule.finalBobjes MorphologyModule.finalProcessingSpur BasicModule.finalProcessingSpur BasicModule.getBisdprea HistogramModule.getBisdpreas BrightContrastModule.getBightnessGray BrightContrastModule.getBrightnessByChannelinColorSpace:FGB BrightContrastModule.getBrightnessByChannelinColorSpace:FUV DeconvolutionModule.seperateStains SaveModule.saveFinalMask SaveModule.saveFinalMask Basi@2019.Colfage 0fAmperians.Pathologists. Materials used with permission of faculty. 		LightDarkModule.getIntensityThresholdPercent:tissue	n	1	A10 30300	The second		VIII IA		and the second			
 IdphtDarkModule.getIntensityThresholdPercent:darktissue MorphologyModule.removeSmallObjects MorphologyModule.itentifyBlurryRegions BasicModule.finalProcessingSpur BasicModule.finalProcessingArea HistogramModule.compareToTemplates HistogramModule.getBrightnessGray BrightContrastModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:YUV DeconvolutionModule.seperateStains SaveModule.saveFinalMask SaveModule.saveFinalMask Basi@2019College id/AmericaniBathologists. Materials used with permission of faculty. 		#BubbleRegionByRegion.pixelWise		200	100 Fairs	stalle la	200			10	4/12/14/1	- Alar	
 MorphologyModule.removeSmallObjects MorphologyModule.fillSmallHoles BasicModule.fillSmallHoles BasicModule.finalProcessingSpur BasicModule.compareToTemplates HistogramModule.getHistogram BrightContrastModule.getBrightnessBray BrightContrastModule.getBrightnessBryChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:YUV DeconvolutionModule.seperateStains SaveModule.saveFinalMask SaveModule.saveFinalMask Basi @2019.College.gid American:Pathologists. Materials used with permission of faculty. 		LightDarkModule.getIntensityThresholdPercent:darktissue	1000 com	and the second			V	and ats		10-0-0-0	and the second		1
12 MorphologyModule.fillSmallHoles 13 BlurDetcctionModule.identifyBlurryRegions 14 BasicModule.finalProcessingSpur 15 BasicModule.compareIoTemplates 16 HistogramModule.getfilstogram 18 BrightContrastModule.getContrast 19 BrightContrastModule.getBrightnessGray 20 BrightContrastModule.getBrightnessByChannelinColorSpace:RGB 21 BrightContrastModule.getBrightnessByChannelinColorSpace:YUW 22 DeconvolutionModule.saveFinalMask 23 SaveModule.saveFinalMask 24 SaveModule.get of AmericanPathologists. Materials used with permission of faculty.		MorphologyModule.removeSmallObjects											
 BlurDetectionModule.identifyBlurryRegions BasicModule.finalProcessingSpur BasicModule.finalProcessingArea HistogramModule.compareToTemplates HistogramModule.getHistogram BrightContrastModule.getBrightnessGray BrightContrastModule.getBrightnessBray BrightContrastModule.getBright		MorphologyModule.fillSmallHoles	_thumb,pog		1	200		1-	X				
 BasicModule.finalProcessingSpur BasicModule.finalProcessingArea HistogramModule.compareToTemplates HistogramModule.getHistogram BrightContrastModule.getErightnessGray BrightContrastModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:RGB SaveModule.saveFinalMask SaveModule.saveFinalMask SaveModule.saveThumbnails Basi @2019-College of American Pathologists. Materials used with permission of faculty. 		BlurDetectionModule.identifyBlurryRegions		27	6	1		20 m	Internet 2				
 BasicModule.finalProcessingArea HistogramModule.compareToTemplates HistogramModule.getHistogram BrightContrastModule.getContrast BrightContrastModule.getBrightnessGray BrightContrastModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:YUV DeconvolutionModule.seperateStains SaveModule.saveFinalMask SaveModule.saveFinalMask Basi @2019-College tof AmpericaniPathologists. Materials used with permission of faculty. 		BasicModule.finalProcessingSpur		2	1	1. N			200	100	1.0		
 HistogramModule.compareToTemplates HistogramModule.getHistogram BrightContrastModule.getContrast BrightContrastModule.getBrightnessGray BrightContrastModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:YUV DeconvolutionModule.seperateStains SaveModule.saveFinalMask SaveModule.saveFinalMask Basi @2019.College.of Ampericani Pathologists. Materials used with permission of faculty. 		BasicModule.finalProcessingArea	We have a second s	02000000	SERV. MINA A	amjani en tar k		16887-1778 - 1984-1	A Martin and a second	CIE-HAR-HER MOR			
17 HistogramModule.getHistogram 18 BrightContrastModule.getContrast 19 BrightContrastModule.getBrightnessGray 20 BrightContrastModule.getBrightnessByChannelinColorSpace:RGB 21 BrightContrastModule.getBrightnessByChannelinColorSpace:YUV 22 DeconvolutionModule.seperateStains 23 SaveModule.saveFinalMask 24 SaveModule.saveFinalMask 25 Basi@2019.Colliege.0f Ampericami.Pathologists. Materials used with permission of faculty.		HistogramModule.compareToTemplates	All					1	A Ch				
18 BrightContrastModule.getContrast 19 BrightContrastModule.getBrightnessGray 20 BrightContrastModule.getBrightnessByChannelinColorSpace:RGB 21 BrightContrastModule.getBrightnessByChannelinColorSpace:YUV 22 DeconvolutionModule.seperateStains 23 SaveModule.saveFinalMask 24 SaveModule.saveThumbnails 25 Basi@2019.Colliege.0f Ampericani.Pathologists. Materials used with permission of faculty.		HistogramModule.getHistogram	and the second second	4	1	17		1.16					
19 BrightContrastModule.getBrightnessGray 20 BrightContrastModule.getBrightnessByChannelinColorSpace:RGB 21 BrightContrastModule.getBrightnessByChannelinColorSpace:YUV 22 DeconvolutionModule.seperateStains 23 SaveModule.saveFinalMask 24 SaveModule.saveThumbnails 25 Basi@2019.Colliege.0f Ampericani.Pathologists. Materials used with permission of faculty.		BrightContrastModule.getContrast				10	-47	1	100	1.1			
 BrightContrastModule.getBrightnessByChannelinColorSpace:RGB BrightContrastModule.getBrightnessByChannelinColorSpace:YUV DeconvolutionModule.seperateStains SaveModule.saveFinalMask SaveModule.saveThumbnails Basi@2019.Colliege.of AmpericantPathologists. Materials used with permission of faculty. 		BrightContrastModule.getBrightnessGray	Constant Second Internet Second Secon	olaisida ta d	P Andrea Terrateria	-104-482-538-5	In the line of the	. 100	una derri dal da ora (selector de	NASS AND SUDDIES SAL SE			
21 BrightContrastModule.getBrightnessByChannelinColorSpace:YUV Center for Computerized Imaging and 22 DeconvolutionModule.seperateStains Personalized Diagnostics 23 SaveModule.saveFinalMask Personalized Diagnostics 24 SaveModule.saveThumbnails Basi@2019.Colliege.0f Americani.Pathologists. Materials used with permission of faculty.		BrightContrastModule.getBrightnessByChannelinColorSpace:RGB	Conton	L_				4				1	
22 DeconvolutionModule.seperateStains 23 SaveModule.saveFinalMask 24 SaveModule.saveThumbnails 25 Basi@2019.Colliege.0f Americani Pathologists. Materials used with permission of faculty.		BrightContrastModule.getBrightnessByChannelinColorSpace:YUV	Center	10	r C	OII	ipu	lleri	Ized L	magi	ng an	a	
23 SaveModule.saveFinalMask Personalized Diagnostics 24 SaveModule.saveThumbnails 25 25 Basi@2019.Colliege.0f Ampericani Pathologists. Materials used with permission of faculty. 26		DeconvolutionModule.seperateStains				n		1	1 1 1		· ·		
24 SaveModule.saveThumbnails 25 Basi@2019€cillegeb@AmericaniPathologists. Materials used with permission of faculty.		SaveModule.saveFinalMask				<u>-Pe</u>	ers <u>c</u>	<u>ona</u>	Ized	$D1ag_1$	nostic	S	
25 Basi @ 2019 College lof Ampericani Pathologists. Materials used with permission of faculty.		SaveModule.saveThumbnails								$ \mathcal{O}$			
		Basi @2019 College of Americani Pathologists. Materials used with permission of faculty.											

End Users of HistoQC

- Pathology Departments
 - Real-time rolling average of metrics
 - Identify issues early
- Repositories + Computational pathologists
 - Identify and avoid artifacts and outliers for better datasets
 - Stain variances
 - Micron per pixel (MPP) heterogeneity
 - Batch effect presence
 - Explicitly define acceptable tolerand

Example Feature: Template Matching

Center for Computerized Imaging and Personalized Diagnostics

Quality Control Slide Repository

- Created website to host the "greatest hits"
- Slide and associated metadata (e.g., artifact type)
- Useful as a didactic tool for new pathologists
- Benchmark algorithms
 - Detecting artifacts
 - Measure algorithm robustness to artifacts
- Currently available: <u>http://www.histoqcrepo.com</u>

1.03	loqu	kepo Ga	mery opioad	ADOUL							
Sh	ow 10	• entries									Search:
4									ř. ř.		
	D)	Thumbnail	Filename	Upload • All •	Contact •	Tissue *	Creation *	Base_Mag. •	Artifact •	▼ Stain ▼	Comments * All
1			TCGA-A1-A05F- 012-00- DX1.7F252D89- EA78-419F-A969- 187313D77499.tvs	05/31/2018	avj232@case.edu	Breast	12/06/2011	40.0	Pen matcing	H&E	Aperio Image Library v11.1.6 65276:64727 (256:256) JPEG RISE Q=30 Aperio Image Library v11.1.6 68000:84827 (0.100 65276:64727) (256:256) J2K/1UV16 Q+
2	ā	9	TCGA-A1-A05M- 012-00- DX1.AD503D8D- 4D93-4476-8467- F091254FDF78.svs	05/31/2018	avg232@case.edu	Breast	12/06/2011	40.0	Pen marking	H&E	Aperio Image Library v11.1.6 100794x80501 (256x256) JPEG/RGB Q=30 Aperio Image Library v11.1.6 105000x80601 (0.100 100794x80501) (256x256) J2U/YU/YI
m	R		TCGA-A1-ADSN- 012-00- DX1.559885AE- AF87-41DC-8A18- 8D6DA3988540.3vs	05/31/2018	avg232@case.edu	Breast	12/05/2011	40.0	Sen Marking	Has	Apeno image Library v11.1.6 113274/72891 (256/256) JPEG/RGB Q=30/Aperio image Library v11.1.6 118000/72991 (0.100 113274/72891) (256/256) J2(V1U/11
4	ą		TCGA-A1-ADSQ- 012-00- DX136071264- 3407-4224-8C83- 2ED00294569A.svs	05/31/2018	aig232@case.adu	Breast	12/05/2011	40.0	Pen Marking.	H&E	Apeno Image Library v11.1.6 \$8874x88810 (256x256) JPEG/RGB Q=30:Apenio Image Library v11.1.6 103000x89910 (0,100 98874x89810) (256x256) J2K/YUV16 C
5			TCGA-A2-A0YF- 012-00- DX1.61668995- 0669-43D6-89C7- FE398CE529CF.svs	05/31/2018	axj232@case.edu	Breast	02/07/2011	40.0	Coversilo	H&E	Apena image ubrary v10.2.20 158000x66851 [0.0 151699x60761] (256x256) JPEG/RGB Q=30[AppMag = 40[StripeWidth = 1000]ScanScope (0 = 551248CN/TLR)
6	Ø		TCGA-A2-A0YI- 01E-00- DX1,1CF2EC2D- C722-467F-8832- 4098823E8D8F.svs	05/31/2018	axj232@case.edu	Breast	02/04/2011	40.0	Conversijo	H&E	Apeno image Library v10.2.20 140000h82858 (0.0 134417h82758) (256x256) JPEG/RGB Q=30(AppMag = 40(StripeWidth = 1000(ScanScope ID = 551248C)/TLR/F
7	10		TCGA-A2-A1FW- 012-00- DX1.DC28C507- E578-4445-833F- 201:91 Grolle	ge of Americ	avg232@case.edu can Pathologists. I	_{Breast} Vlaterials used w	06/27/2011 vith permissic	40.0 on of faculty	Knife Chatter	H&E	Apeno image Library v10.2.41 134000x47959 (0.100 128316x47859) (256:266) JPEG/RGB Q=30(AppMag = 40)StripeWidth = 1000)StanScope ID = 551436CNTL

Final Call To Action - Download HistoQC

- Try on your data
- Submit pull requests for new modules

HistoQC: reproducible slide quality metrics with artifact localization

github.com/choosehappy/HistoQC

Upload/download artifact containing slides to/from repository:

HistoQCRepo.com

Thank you!

andrew.janowczyk@case.edu

andrewjanowczyk.com

Center for Computerized Imaging and Personalized Diagnostics

Current dataset: results.tsv !	Size: 94 slides About	Instruction
----------------------------------	-----------------------	-------------

Reset

HistoQc Table Chart Image

filename 11	comments $\uparrow\downarrow$	levels $\uparrow\downarrow$	height 👊	width $\uparrow\downarrow$	mpp_x ↑↓	mpp_y ↑↓	Magnification $\uparrow\downarrow$	pen_markings 11	coverslip_edge 11	nonwhite 11	dark îl	percent	Сору
TCGA-D8-A1JI-01Z-00-DX2.E688E270-26C9-43EC-BC26-86BF8B74A31D.svs		4	61772	101591	0.2527	0.2527	40	0	0.010239647505201746	0.37570282730202764	0.0000585859410060789	0.02	Save
TCGA-D8-A1JJ-01Z-00-DX1.a986b48f-b295-4d7a-b778-ce829cdf9c38.svs		4	89863	84727	0.248	0.248	40	0	0	0.40365625618646767	0.00038530934490148993	0.02	Delete
TCGA-D8-A1JJ-01Z-00-DX2.7D20F308-7DC6-4367-9459-3AC4C654E7F7.svs		4	74635	83663	0.2527	0.2527	40	0	0.02097230770845992	0.6022809295769842	0.0069632641758784015	0.02	Deselect
4													Cols 🕶

Center for Computerized Imaging and Personalized Diagnostics

Visualizing Individual Results

Center for Computerized Imaging and Personalized Diagnostics

What to do with outliers?

Make a decision

2.

1. Remove entirely from dataset is image is really bad

3. Can (and should) use HistoQC output mask to select regions to sample from!

If rest of the image is okay, make sure to avoid that bad region

Center for Computerized Imaging and Personalized Diagnostics